

1 The Role of Meteorological Conditions and Pollution Control

2 Strategies in Reducing Air Pollution in Beijing during APEC 2014 and

- 3 **Parade 2015**
- 4 Pengfei Liang¹, Tong Zhu^{1*}, Yanhua Fang¹, Yingruo Li^{1, 2}, Yiqun Han¹, Yusheng Wu¹,
- 5 Min Hu¹, and Junxia Wang¹
- 6 ¹SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering,
- 7 Peking University, Beijing, 100871, China
- 8 ²Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, China
- 9 Meteorological Administration, Beijing, 100089, China
- ^{*}Correspondence to: Tong Zhu (tzhu@pku.edu.cn)
- 11

12 Abstract

To control severe air pollution in China, comprehensive pollution control 13 14 strategies have been implemented throughout the country in recent years. To evaluate 15 the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. We therefore developed a generalized 16 17 linear regression model (GLM) to establish the relationship between the concentrations of air pollutants and meteorological parameters. Using the intensive air pollution 18 control strategies implemented during the Asia-Pacific Economic Cooperation Forum 19 20 in 2014 (APEC 2014) and the Victory Parade for the Commemoration of the 70th

Anniversary of the Chinese Anti-Japanese War and the World Anti-Fascist War in 2015 21 22 (Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. During the APEC 23 (1 October to 31 December 2014) and Parade (1 August to 31 December 2015) 24 25 sampling periods, atmospheric particulate matter of aerodynamic diameter $\leq 2.5 \ \mu m$ (PM_{2.5}) samples were collected and gaseous pollutants (SO₂, NO, NO_x, and O₃) were 26 27 measured online at a site in Peking University (PKU). The concentrations of all 28 pollutants except ozone decreased dramatically (by more than 20%) during both events, 29 compared with the levels during non-control periods. To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air 30 pollutant concentrations during days with stable meteorological conditions (i.e. when 31 32 the daily average wind speed (WS) was less than 2.50 m s⁻¹ and planetary boundary layer (PBL) height was lower than 290 m). We found that the average $PM_{2.5}$ 33 concentration during APEC decreased by 45.7% compared with the period before 34 APEC and by 44.4% compared with the period after APEC. This difference was 35 36 attributed to emission reduction efforts during APEC. However, there were few days with stable meteorological conditions during Parade. As such, we were unable to 37 estimate the level of emission reduction efforts during this period. Finally, GLMs based 38 only on meteorological parameters were built to predict air pollutant concentrations, 39 40 which could explain more than 70% of the variation in air pollutant concentration levels, 41 after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM 42

performance revealed that the GLM, even based only on meteorological parameters, 43 44 could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution, and hence the contribution of control strategies in reducing air 45 pollution. Using the GLM, we found that the meteorological conditions and pollution 46 47 control strategies contributed 30% and 28% to the reduction of the PM2.5 concentration during APEC 2014, and 38% and 25% during Parade 2015. We also estimated the 48 49 contribution of meteorological conditions and control strategies implemented during 50 the two events in reducing the concentrations of gaseous pollutants and PM_{2.5} 51 components with the GLMs, revealing the effective control of anthropogenic emissions.

52 **1 Introduction**

53 Air pollution poses serious health risks to human populations and is one of the 54 most important global environmental problems. To control air pollution in China, the 55 State Council of China (2013) has released the Action Plan for Air Pollution Prevention and Control, which sets pollution control targets for different regions, e.g. atmospheric 56 particulate matter of aerodynamic diameter $\leq 2.5 \ \mu m$ (PM_{2.5}) concentrations in 2017 57 shall fall in Beijing-Tianjin-Hebei (BTH) by 25%, in the Yangtze River Delta by 20%, 58 and in the Pearl River Delta by 15%, compared with 2012 levels. To meet these targets, 59 60 comprehensive pollution control strategies have been implemented at the national, provincial, and city levels. However, it is not clear how effective these strategies are in 61 62 reducing air pollution. One of the challenges in evaluating the effectiveness of these 63 strategies is that the long-term strategies cannot improve air quality in the short term.

The efforts made to ensure satisfactory air quality for special events, such as the Beijing 64 65 2008 Olympics, provide a unique opportunity to evaluate the effectiveness of pollution control strategies (Kelly and Zhu, 2016). During the Beijing Olympics comprehensive 66 pollution control strategies were implemented intensively over a short period of time. 67 68 Based on the successful experience during this event, the Chinese government implemented similar air pollution control measures for the 41st Shanghai World Expo 69 in 2010 (SEPB, 2010), the 16th Guangzhou Asian Games and Asian Para Games in 2010 70 (GEPB, 2009), and the Chengdu Fortune Forum 2013 (CEPB, 2013). To ensure 71 72 satisfactory air quality in Beijing during the two most recent events: the Asia-Pacific 73 Economic Cooperation Forum in 2014 (APEC 2014) and the Victory Parade for the Commemoration of the 70th Anniversary of the Chinese Anti-Japanese War and the 74 75 World Anti-Fascist War in 2015 (Parade 2015), the Chinese central government and the local government in Beijing, together with its surrounding provinces, implemented 76 77 comprehensive air pollution control strategies, including the control of emissions from traffic, industry, and coal combustion, as well as dust pollution control (Table 1). These 78 79 two events provide a good opportunity to evaluate the effectiveness of air pollution 80 control strategies.

81 One challenge when evaluating the effectiveness of air pollution control strategies 82 over a short period of time is separating out the contribution of meteorological 83 conditions from the reduction in air pollution levels.

Most previous studies have only provided a descriptive analysis of the changing concentrations of air pollutants during these events. Wen et al. (2016) reported that the

average $PM_{2.5}$ concentration during APEC decreased by 54%, 26%, and 39% compared with the levels before APEC in Beijing, Shijiazhuang, and Tangshan, respectively. The authors also reported that the average concentration of total elements in $PM_{2.5}$ during APEC decreased by 75%, 35%, and 36% compared with the levels before APEC in these three sites, respectively. Han et al. (2015) observed that the extinction coefficient and absorbance coefficient decreased significantly during APEC compared with the values before.

An increasing number of studies have recognized the importance of 93 94 meteorological conditions in determining air pollution in Beijing and North China Plain (e.g., Zhang et al., 2012). A northerly wind is considered to be favourable for pollutant 95 diffusion, while a southerly wind is considered to be favourable for the transport of 96 97 pollutants to Beijing (Zhang et al., 2014). When assessing the effectiveness of air pollution control strategies, a few studies have distinguished between the contribution 98 of meteorological conditions and pollution control strategies in reducing air pollution 99 by comparing air pollutant concentrations under similar meteorological conditions 100 101 (Wang et al., 2015; Zhang et al., 2009). However, in these studies, days with stable meteorological conditions were determined subjectively, which may introduce 102 uncertainties and inconsistencies when estimating changes in air pollutant 103 concentrations. 104

105 Statistical models have been developed to establish the relationship between air 106 pollutant concentrations and meteorological parameters. Table 2 summarizes these 107 models, with their respective R^2 values. Multiple linear regression models have been

108	widely applied to demonstrate the quantitative relationship between air pollutant
109	concentrations and meteorological parameters, by assuming a linear relationship.
110	However, these relationships are often non-linear (Liu et al., 2007; Liu et al., 2012).
111	Table 2 shows that most of the models with good explanation ($R^2 > 0.6$) have
112	actually adopted visibility, aerosol optical depth (AOD), and air quality index (AQI) as
113	independent variables to improve the performance of the regression models (Liu et al.,
114	2007; Sotoudeheian and Arhami, 2014; Tian and Chen, 2010; You et al., 2015). This
115	could cause problems in the prediction of air pollutant concentrations during intensive
116	emission control periods because visibility, AOD, and AQI are also dependent on air
117	pollution levels; hence, the statistical models may not function when air pollutant levels
118	are drastically reduced over a short period. A statistical model based solely on
119	meteorological parameters to predict air pollutant concentrations is therefore required.
120	In this study, we used the air pollution control periods during APEC 2014 and
121	Parade 2015 to estimate the role of meteorological conditions and pollution control
122	strategies in reducing air pollution in the megacity of Beijing. We first measured the
123	changes in air pollutant concentrations, including $PM_{2.5}$, gaseous pollutants, and the
124	components of $PM_{2.5}$. We then estimated the role of meteorological conditions and
125	pollution control strategies in reducing air pollution by comparing the pollutant
126	concentrations during days with stable meteorological conditions. Finally, we
127	developed a statistical model based only on meteorological parameters to evaluate the
128	role of meteorological conditions and pollution control strategies in reducing the levels
129	of air pollution in Beijing. Compared with the models used in previous studies, our

- 130 statistical model had the following advantages: (1) all of the independent variables were
- 131 meteorological parameters; (2) we considered the non-linear relationships between air
- 132 pollutant concentrations and meteorological parameters; and (3) in addition to
- 133 predicting PM_{2.5} mass concentrations, our model could also predict concentrations of
- 134 gaseous pollutants and individual PM_{2.5} components.

135 2 Measurements and Methods

136 2.1 Measurements of Air Pollutants

Gaseous pollutants (SO₂, NO, NO_x, and O₃) were measured online, and PM_{2.5}
samples were collected on filters at an urban monitoring station in the campus of Peking
University (39.99°N, 116.33°E) northwest of Beijing (Huang et al., 2010). The station
is located on the roof of a six-floor building, about 20 m above the ground and about
550 m north of the fourth ring road.

142 A PM_{2.5} four-channel sampler (TH-16A, Wuhan Tianhong Instruments Co., Ltd., 143 Hubei, China) was used to collect PM2.5 samples. The sampling duration was 23.5 h (from 09:30 to 09:00 LT the next day). Both 47-mm quartz filters (QM/A, Whatman, 144 Maidstone, England) and Teflon filters (PTFE, Whatman) were used. The flow rate was 145 calibrated to 16.7 L min⁻¹ each week and a blank PM_{2.5} sample was collected once a 146 147 month. The quartz filters were baked at 550°C for 5.5 h before use. Immediately after collection, the filter samples were stored at -25°C until analysis. A total of 225 PM_{2.5} 148 149 filter samples were collected during APEC (1 October to 31 December 2014) and Parade (1 August to 31 December 2015) sampling periods. During the sampling periods, 150

. . . .

151	20 days of $PM_{2.5}$ samples were missed due to rain or sampler failures. Sulphur dioxide
152	(SO_2) was measured with an SO_2 analyzer (43i TL, Thermo Fisher Scientific, Waltham,
153	MA, USA), with a precision of 0.05 ppb. Nitric oxide (NO) and nitrogen oxides (NO _x)
154	were measured with a NO-NO $_{\rm x}$ analyzer (42i TL, Thermo Fisher Scientific), with
155	precisions of 0.05 ppb for NO and 0.17 ppb for NO ₂ . Ozone (O_3) was measured with
156	an O_3 analyzer (49i, Thermo Fisher Scientific), with a precision of 1.0 ppb. The SO_2
157	and NO-NO _x analyzers both had a detection limit of 0.05 ppb, and the O_3 analyzer had
158	a detection limit of 0.50 ppb. All of the gaseous pollutant analyzers had a time
159	resolution of 1 min, and were maintained and calibrated weekly following the
160	manufacturer's protocols.

161 2.2 Meteorological Data

Meteorological data were obtained from the National Climate Data Center (www.ncdc.noaa.gov) dataset. The meteorological parameters were monitored at a station located in the Beijing Capital International Airport, and consisted of temperature (T), relative humidity (RH), wind direction (WD), wind speed (WS), sea level pressure (SLP), and precipitation (PREC). The PBL height was computed from the simulation results of the National Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) model (www.ready.arl.noaa.gov/READYamet.php).

169 2.3 Analysis of the PM_{2.5} Filter Samples

To obtain daily average $PM_{2.5}$ mass concentrations, Teflon filters were weighed before and after sampling using an electronic balance, with a detection limit of 10 μ g

172	(AX105DR) in a super-clean lab (T: $20 \pm 1^{\circ}$ C, RH: $40 \pm 3^{\circ}$). A portion of each Teflon
173	filter was extracted with ultrapure water for the measurement of water-soluble ions (Na ⁺ ,
174	$\rm NH_4^+,K^+,Mg^{2+},Ca^{2+},SO_4^{2-},NO_3^-,$ and $\rm Cl^-),$ with an ion-chromatograph (IC-2000 &
175	2500, Dionex, Sunnyvale, CA, USA). The detection limits of Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ²⁺ ,
176	Ca^{2+} , SO_4^{2-} , NO_3^{-} , and Cl^- were 0.03, 0.06, 0.10, 0.10, 0.05, 0.01, 0.01, and 0.03 mg
177	L^{-1} , respectively. A portion of each Teflon filter was digested with a solution consisting
178	of nitric acid (HNO ₃), hydrochloric acid (HCl), and hydrofluoric acid (HF) for the
179	measurement of trace elements (Na, Mg, Al, Ca, Mn, Fe, Co, Cu, Zn, Se, Mo, Cd, Ba,
180	Tl, Pb, Th and U), with inductively coupled plasma-mass spectrometry (ICP-MS,
181	Thermo X series, Thermo Fisher Scientific). The recoveries for all measured elements
182	fell within $\pm 20\%$ of the certified values. A semi-continuous organic carbon/elemental
183	carbon (OCEC) analyzer (Model 4, Sunset Laboratory, Tigard, OR, USA) was used to
184	analyze organic and elemental carbon from a round punch (diameter: 17 mm) from each
185	quartz filter sample. The T protocol of the National Institute for Occupational Safety
186	and Health (NIOSH) thermal-optical method was applied (see details in Table S1).
187	All analytical instruments were calibrated before each series of measurements. The

188 R^2 values of the calibration curves for ions, elements, and sucrose concentrations were 189 higher than 0.999.

190 2.4 Generalized Linear Regression Model (GLM)

A generalized linear regression model (GLM) was used to establish therelationship between air pollutant concentrations and meteorological parameters. The

- 193 objective dependent variables included concentrations of PM_{2.5}, individual PM_{2.5}
- 194 components, and gaseous pollutants.

To match the 23.5-h (09:30-09:00 LT the next day) sampling time of the PM_{2.5} 195 filter samples, metrological parameters were averaged over the same time span (Table 196 197 3) and used in the GLM alongside other parameters, e.g. the daily maximum of certain 198 meteorological parameters. The meteorological parameters used in the GLM were T, 199 RH, WD, WS, PBL height, SLP, and PREC. WDs were grouped into three categories, 200 with relevant values and assigned to each category: north (NW, W and NE) as 1, south 201 (SW, SE and E) as 2, and "calm and variable" as 3. A calm wind was defined as when the WS was less than 0.5 m s⁻¹. A variable WD was defined as a condition when: (1) 202 the WD fluctuated by 60° or more during a 2-min evaluation period, with a WS greater 203 204 than 6 knots (11 km h^{-1}); or (2) the WD was variable and the WS was less than 6 knots $(11 \text{ km h}^{-1}).$ 205

A preliminary analysis showed that the concentrations of air pollutants and meteorological parameters fitted best with an exponential function or power function (Figure S2); therefore, these functions were natural log transformed and introduced into the GLM.

We applied the stepwise method to evaluate the level of multicollinearity between the independent variables based on relevant judgement indexes, such as the variance inflation factor (VIF) or tolerance. Based on the assumption that the regression residuals followed a normal distribution and homoscedasticity, which is discussed in a later section, we developed the following model to calculate the concentrations of air

215 pollutants and chemical components of PM_{2.5} based on meteorological parameters:

216
$$\ln C_{ij} = \beta_0 + \sum_{k=1}^m \beta_{1k} x_k + \sum_{k=1}^n \beta_{2k} \ln x_k + \sum_{k=1}^m \beta_{3k} x_k (lag) + \sum_{k=1}^{n'} \beta_{4k} \ln x_k (lag)$$
(1)

where C_{ij} is the concentration of the j^{th} air pollutant averaged over the i^{th} day, x_k is the 217 k^{th} meteorological parameter, β_k is the regression coefficient of the k^{th} meteorological 218 parameter, and β_0 is the intercept. For meteorological parameters containing both 219 220 positive and negative values (i.e. T), only the exponential form was applied. m, n, m', 221 and n' are the number of different forms of meteorological parameters that were 222 eventually included in the model, and were determined based on the stepwise entering method of the regression model. The suffix of (lag) refers to the meteorological 223 224 parameters of the previous day. The main assumption for equation (1) was that the concentrations of air pollutants were only a function of the meteorological parameters, 225 and the emission intensities were constant. Hence, we only used the data before and 226 227 after APEC 2014 and Parade 2015 control periods in equation (1), excluding the data 228 collected during each period and during the heating season, e.g. after 15 November 2014. 229

230 3 Results and Discussion

3.1 Changes of Air Pollutant Concentrations during the APEC 2014 and Parade 2015 Campaigns

Figure 1 shows the time series of PM_{2.5} and the concentrations of its components, as well as the meteorological parameters during the APEC 2014 and Parade 2015 campaigns. The APEC 2014 campaign consisted of three distinct periods: before APEC

236	(BAPEC, 18 October to 2 November 2014), during APEC (APEC, 3 to 12 November
237	2014), and after APEC (AAPEC, 13 to 22 November 2014). The Parade 2015 campaign
238	was also divided into three distinct periods: before Parade (BParade, 1 to 19 August
239	2015), during Parade (Parade, 20 August to 3 September 2015), and after Parade
240	(AParade, 4 to 23 September 2015).
241	There were two pollution episodes during APEC, on 4 November and 7-10
242	November 2014, which corresponded to two relatively stable periods with low WS,
243	mainly from the south. The T declined gradually from 12.2°C before APEC to 4.9°C
244	after APEC, and the RH was above 60% during the two pollution episodes. During
245	Parade, the $PM_{2.5}$ concentrations were low during the whole control period, with the
246	prevailing WD from the north and low WS. The T was mostly higher than 20°C, which
247	differed from that during the APEC campaign when it was lower than 20°C.
248	Table 4 lists the mean concentrations and standard deviations of PM _{2.5} , gaseous

pollutants, and PM_{2.5} components during the APEC and Parade campaigns. The mean concentration of PM_{2.5} during APEC was $48 \pm 35 \ \mu g \ m^{-3}$, 58% lower than during BAPEC (113 ± 62 \ \mu g \ m^{-3}), and 51% lower than during AAPEC (97 ± 84 \ \mu g \ m^{-3}). The mean concentration of PM_{2.5} during Parade was $15 \pm 6 \ \mu g \ m^{-3}$, 63% lower than during BParade (41 ± 14 \ \mu g \ m^{-3}), and 62% lower than during AParade (39 ± 28 \ \mu g \ m^{-3}).

Figure 1 here

254

255 Figure 2 shows the proportion of the measured PM_{2.5} components, including OC;

EC; the sum of the sulphate, nitrate, and ammonia (SNA); and chloride ion (Cl⁻) and

257 trace elements, which together accounted for 70-80% of the total PM_{2.5} mass

258	concentration. The proportions of OC (23.5%) and EC (3.5%) in $\text{PM}_{2.5}$ were highest
259	during APEC. The proportion of SNA in $PM_{2.5}$ during APEC (40.6%) was lower than
260	during BAPEC (50.7%) and higher than during AAPEC (37.2%). The proportions of
261	$Cl^-(4.3\%)$ and elements (6.8%) in PM_{2.5} during APEC were higher than during BAPEC
262	and lower than during AAPEC. For the Parade campaign, the proportions of OC (26.6%)
263	and elements (6.6%) in PM _{2.5} were highest during Parade. The proportions of EC (4.9%)
264	and $Cl^{-}(1.1\%)$ in PM _{2.5} during Parade were higher than during BParade and lower than
265	during AParade. The proportion of SNA in $PM_{2.5}$ was lowest during Parade (37.3%).
266	Similarly, during the pollution control periods of APEC and Parade, the proportions of
267	OC and elements in $PM_{2.5}$ tended to increase and the proportion of SNA in $PM_{2.5}$ tended
268	to decrease.

269

Figure 2 here

EC is usually considered to be a marker of anthropogenic primary sources, while 270 the sources of OC include both primary and secondary organic aerosols. The correlation 271 between OC and EC can reflect the origin of carbonaceous fractions (Chow et al., 1996). 272 Figure 3 shows the correlation between EC and OC concentrations during the APEC 273 274 and Parade campaigns. During the APEC and Parade campaigns, the correlation coefficient during both control periods ($R^2 = 0.9032$) was larger than that during non-275 276 control periods ($R^2 = 0.6468$), indicating that OC and EC were mainly derived from the same sources during both pollution control periods, and were from different sources 277 during the non-control periods. The slope of the OC/EC correlation during the pollution 278 control period was 6.86, which was higher than that during the non-control period (3.97). 279

280	This could be due to high levels of secondary OC (SOC) formation during the control
281	periods, and/or the higher contribution from residential solid fuel (coal and biomass)
282	burning (Liu et al., 2016).
283	Figure 3 here
284	Figure 4 shows the proportion of SNA in $PM_{2.5}$ ($\rho(SNA)/PM_{2.5}$), the sulphur (S)
285	oxidation ratio (SOR = $[SO_4^{2-}]/([SO_2]+[SO_4^{2-}]))$, and nitrogen oxidation ratio (NOR =
286	$[\mathrm{NO}_3^{\text{-}}]/([\mathrm{NO}_x]+[\mathrm{NO}_3^{\text{-}}])),$ along with $\mathrm{PM}_{2.5}$ concentrations during the APEC (a) and
287	Parade (b) campaigns. During APEC, the average $\rho(SNA)/PM_{2.5}$ was 27%, which was
288	significantly lower than during BAPEC (42%). During Parade, the average
289	$\rho(SNA)/PM_{2.5}$ was 35%, which was also significantly lower than during BParade (47%).
290	During the APEC campaign, the average SO_2 concentration was 11.3 $\mu g\ m^{-3}$
291	before APEC, 9.5 $\mu g~m^{-3}$ during APEC, and 34.8 $\mu g~m^{-3}$ after APEC, respectively. The
292	average NOx concentration was 151 μgm^{-3} before APEC, 81 μgm^{-3} during APEC, and
293	$220\ \mu g\ m^{-3}$ after APEC, respectively. During the Parade campaign, the average SO_2
294	concentration during Parade was 1.6 μg m $^{-3}$, lower than both during BParade (2.7 μg
295	$m^{-3})$ and AParade (5.9 $\mu g\ m^{-3}).$ The average NOx concentration was also lower during
296	Parade (26 μ g m ⁻³), than during BParade (57 μ g m ⁻³) and AParade (63 μ g m ⁻³).
297	During the APEC campaign, both the SOR and NOR declined gradually. The
298	average SOR was 42%, 27%, and 17% in the BAPEC, APEC, and AAPEC periods,
299	respectively. The average NOR was 13%, 8%, and 5% in the BAPEC, APEC, and

300 AAPEC periods, respectively. SOR and NOR exhibited different patterns during the

301 Parade campaign. The average SOR was 75%, 64%, and 55% in the BParade, Parade,

302	and AParade periods, respectively. The average NOR was 8%, 5%, and 8% in the
303	BParade, Parade, and AParade periods, respectively. The SOR was higher during the
304	Parade campaign (64%) than during the APEC campaign (30%). For NOR, a higher
305	average value was found during the APEC campaign (9%) than during the Parade
306	campaign (7%).

The APEC campaign occurred during autumn and early winter, while the Parade campaign occurred during late summer and autumn. The active photochemical oxidation during the Parade campaign resulted in high SO₂-to-sulphate transformation rates, as indicated by the high SOR. In addition, the higher RH in summer favoured the heterogeneous reaction of sulphate formation. For NOR, the T was higher during Parade than during APEC, which favoured the volatilization of nitric acid and ammonia from the particulate phase of nitrate.

314 These results indicate significant reductions of air pollution during the pollution

control periods of APEC 2014 and Parade 2015. However, it is necessary to evaluate if

Figure 4 here

316 meteorological conditions contributed to this improvement.

317

318 **3.2 Reduction of Air Pollution under Similar Meteorological Conditions**

Figure 5 shows the prevalence of WD during the APEC and Parade campaigns. During APEC, the prevailing WD was from the north and northwest, and accounted for 30-40% of the wind frequency. The mean WS during APEC was 3.1 m s^{-1} , higher than during BAPEC (2.2 m s^{-1}) and AAPEC (2.4 m s^{-1}). The "calm and variable" proportion

323	of APEC was 28.5%, which was lowest during the APEC campaign. During Parade, a
324	northern and northeastern WD accounted for more than 30% of the wind frequency, and
325	the "calm and variable" proportion was 18.5%, much lower than during BParade and
326	AParade (25.7% and 20.3%, respectively).
327	Figure 5 here
328	Figure 6 shows a time series of daily average $\text{PM}_{2.5}$ concentrations and PBL
329	heights during the APEC and Parade campaigns, indicating that they have an anti-
330	correlation. In both the BAPEC and AAPEC periods, the PBL heights were mostly less
331	than 400 m. Compared with during APEC and during Parade, the PBL heights were
332	constantly high, which was much more favourable for the diffusion of air pollutants
333	during the control period.
334	Both WS and PBL height during APEC and Parade were favourable for pollutant
335	diffusion. Therefore, it is necessary to consider meteorological conditions when
336	assessing the impacts of pollution control. One way to do this is to compare air pollution
337	concentrations during periods when meteorological conditions were the same, i.e. under
338	stable conditions (Wang et al., 2015; Zhang et al., 2009).
339	Figure 6 here

340 3.2.1 Identify Stable Meteorological Periods

Stable conditions can be defined based on the relationship between air pollution
levels and both WSs and PBL height. Figure 7 shows scatter plots between PM_{2.5}
concentrations and WS and PBL heights. The relationship can be fitted with a power

344	function. A stable condition could be defined by identifying the turning points when the
345	slopes changed from large to relatively small values, and stable conditions could be
346	defined when WSs and PBL heights were lower than the values of the turning points.
347	The slopes of the power function were monotone, varying with no inflection point.
348	Thus, we used piecewise functions to identify the turning points. As Figure 7 shows,
349	the intersections of two fitting lines represented the turning points of the meteorological
350	influence on $PM_{2.5}$; thus, we defined days with stable meteorological conditions to be
351	those with a daily average WS less than 2.50 m $\ensuremath{\mathrm{s}^{-1}}$ and a daily average PBL height
352	lower than 290 m. We could then compare the corresponding pollutant concentrations
353	between days with stable meteorological conditions.
354	Figure 7 here

355 3.2.2 Variation of Air Pollutant Concentrations under Stable Meteorological 356 Conditions

The days with stable meteorological conditions were determined with the method 357 introduced in Section 3.2.1. As a result, eight days before APEC (18, 22, 23, 24, 28, 29, 358 30, and 31 October 2014), six days during APEC (3, 4, 7, 8, 9, and 10 November 2014), 359 360 and seven days after APEC (14, 15, 17, 18, 19, 20, and 22 November 2014) were defined as having stable meteorological conditions. Table 5 lists the meteorological 361 conditions (WSs and PBL heights), and the concentrations of pollutants on the days 362 363 with stable meteorological conditions during the APEC campaign. For the Parade campaign, only one day in each of the BParade, Parade, and AParade periods was 364 365 defined as having stable meteorological conditions. This was considered to not be well

representative of the Parade campaign. Thus, we only assessed the variation of air pollutant concentrations during stable meteorological periods of the APEC campaign. For days with stable meteorological conditions during the APEC campaign, the average WS was 1.4, 1.9, and 1.7 m s⁻¹ in the BAPEC, APEC, and AAPEC periods, respectively; and the average PBL height was 191, 194, and 160 m in the same three periods, respectively. This clearly shows that the meteorological conditions of days considered to be stable throughout the APEC campaign were very similar.

373 Figure 8 shows the percentage reductions calculated by comparing the decreased 374 average concentrations for all days during APEC to the average concentrations before 375 APEC in black bars, and the percentage reductions based on the days with stable 376 meteorological conditions in red bars. For the difference between the APEC and 377 BAPEC periods, the percentage reduction on days with stable meteorological 378 conditions was much lower than the reduction calculated when considering all days, except for Ca and NO. This indicates that the method applied to days with stable 379 meteorological conditions excluded part of the meteorological influence on pollutant 380 381 concentrations.

The standard deviations were also calculated with an error transfer formula that is described in detail in the Supplementary Information. Figure 8 shows that the standard deviations of the percentage reduction based on days with stable meteorological conditions decreased significantly. For example, the standard deviation of the percentage reduction in $PM_{2.5}$ based on the days with stable meteorological conditions decreased from 39% to 26% compared with the same measurement when all days were

392

388	considered. This indicates that by considering only days with stable meteorological
389	conditions, the uncertainties associated with the percentage reduction figures were
390	reduced and the reliability of the changes of air pollutants concentrations were
391	improved.

Figure 8 here

Figure 9 shows the changes of pollutant concentrations on days with stable meteorological conditions during the APEC campaign. The average $PM_{2.5}$ concentration was 70 µg m⁻³ during APEC, which represented a 45.7% decrease compared with the concentration in the BAPEC period (129 µg m⁻³) and a 44.4% decrease compared with the concentration in the AAPEC period (126 µg m⁻³).

A similar pattern was observed for SNA. The SNA concentration decreased significantly during APEC compared with the BAPEC period. In the BAPEC period, the average sulphate, nitrate, and ammonium concentrations were 13.4, 34.2, and 16.7 μ g m⁻³, respectively. During APEC, the average concentrations of sulphate, nitrate and ammonium were 5.6, 17.0, and 7.4 μ g m⁻³, respectively. In the AAPEC period, the average concentrations of sulphate, nitrate, and ammonium were 12.5, 21.8, and 13.6 μ g m⁻³, respectively.

The average OC concentration was 15.9 μ g m⁻³ during APEC, which represented a 15.4% decrease compared with the concentration in the BAPEC period (18.8 μ g m⁻³). In comparison, the average EC concentration was 2.4 μ g m⁻³ during APEC, which represented a 35.1% decrease compared with the concentration in the BAPEC period (3.7 μ g m⁻³). This indicates that the reduction of the OC concentration was less

410 significant than that of the EC concentration during APEC.

411	During APEC, the average concentrations of Cl^- and potassium ion (K ⁺) were 3.1
412	and 0.96 μg m $^{-3}$, which represented a decrease of 22.5% and 31.4%, compared with the
413	concentrations in the BAPEC period. The average concentrations of \mbox{Cl}^- and \mbox{K}^+
414	increased significantly to 8.9 and 2.01 $\mu g \ m^{-3}$ in the AAPEC period, which represented
415	an increase of 187.1% and 109.4%, respectively compared with the concentrations
416	during APEC. The average concentrations of several anthropogenic elements, including
417	Pb, Zn, Ni, and Mn, all significantly decreased during APEC compared with the
418	concentrations in the BAPEC and AAPEC periods. In contrast, the average
419	concentration of Ca was 634 ng m^{-3} during APEC, which represented only an 8.2%
420	decrease compared with the concentration before APEC (691 ng m^{-3}), this may be due
421	to the fact that Ca is mainly derived from geogenic sources (Mustaffa et al., 2014; Tao
422	et al., 2014).

The average SO₂ concentration was 12.7 μ g m⁻³ during APEC, which was almost 423 424 equal with that in the BAPEC period (12.9 μ g m⁻³), but it increased significantly to 41.8 $\mu g m^{-3}$ in the AAPEC period. In comparison, the average concentrations of NO and 425 NOx decreased significantly during APEC (61.0% and 42.9%, respectively) and 426 increased substantially in the AAPEC period (376.7% and 139.3%, respectively). 427 During APEC, the average concentration of O_3 was 27.1 µg m⁻³, which represented an 428 increase of 92.2% and 133.6%, compared with the concentrations in the BAPEC and 429 AAPEC periods. The significant increase in the average SO_2 concentration in the 430 AAPEC period was consistent with the increased ratios of the average concentrations 431

432	of Cl^- and K^+ in the same period, indicating an increase in coal combustion, which
433	coincided with the government subsidised heating season in north China that started on
434	15 November. The inverse variation patterns of NO_x and O_3 indicate that the significant
435	increase of O_3 may be because of the decline in average NO_x concentration during the
436	pollution control period of APEC.
437	Figure 9 here
438	Table 6 lists the percentage differences among the mean $PM_{2.5}$ concentrations of
439	four periods (P1, P2, P3, and P4) that were randomly selected from within the non-
440	control days of the APEC and Parade campaigns. Based on the assumptions that days
441	with stable meteorological conditions were representative of the corresponding periods
442	during the APEC campaign, and the emission intensities were constant, the percentage
443	differences in the mean $PM_{2.5}$ concentrations between these four random periods should
444	be close to zero. The mean concentrations during P1, P2, P3, and P4 were 120, 101, 96,
445	and 87 μg $m^{-3},$ respectively. The standard deviation (SD) during P1, P2, P3, and P4
446	were 97, 58, 40, and 23 μg $m^{-3},$ respectively, with the average SD being 59 μg $m^{-3}.$ The
447	mean value of the percentage differences of the mean $PM_{2.5}$ concentrations between P1,
448	P2, P3, and P4 was -16%, with a root mean square error (RMSE) of 18%. Hence,
449	uncertainties remain within the percentage differences based on the days with stable
450	meteorological conditions, although the size of these uncertainties was reduced. This
451	may be due to the limited sample size on days with stable meteorological conditions
452	during the APEC campaign. It is therefore necessary to further quantify the
453	meteorological influences.

454 **3.3 Emission Reductions during APEC and Parade Based on GLM Predictions**

The previous section showed that the number of days with stable meteorological conditions could be limited; it was therefore impossible to estimate quantitatively the contribution of meteorological conditions to the reduction of air pollutant concentrations. We developed a GLM based only on meteorological parameters to meet this requirement.

460 **3.3.1 Model Performance**

- Figure 10 shows the scatter plot and correlation between the GLM-predicted and observed concentrations of air pollutants transformed to a natural log. The R^2 values of the linear regression equations ranged from 0.6638 to 0.8542, most of them are higher than 0.7 except for Zn and Mn, indicating that the GLM-predicted concentrations correlated well with the observed concentrations. Specifically, the R^2 value of the linear regression equation for PM_{2.5} is as high as 0.8154.
- 467 Figure 10 here

468	Before applying the GLM to predict the air pollutant concentrations, the cross-
469	validation (CV) method was used to evaluate the performance of the $PM_{2.5}$ model, with
470	the assumption that it was representative of all air pollutants. The data input to the $PM_{2.5}$
471	model was allocated randomly into five equal periods, namely CV1, CV2, CV3, CV4,
472	and CV5. For each test, one period was removed from the input data and the remaining
473	data were applied to establish the CV model, which was then used to predict the $PM_{2.5}$
474	concentrations for the removed period. After five rounds, all input data were included

475	in the CV test. Figure 11 shows the time series of the observed and CV-predicted $\ensuremath{\text{PM}_{2.5}}$
476	concentrations, which demonstrates a good performance for the $PM_{2.5}$ GLM.
477	Figure 11 here
478	Table 7 shows the CV-predicted $\text{PM}_{2.5}$ concentrations. The adjusted R^2 values
479	for the five CV periods ranged from 0.710 to 0.807, which was lower than the value
480	(0.808) derived from the PM _{2.5} model, due to the lack of input data. The observed mean
481	$PM_{2.5}$ concentrations were 94, 59, 44, 54, and 41 $\mu g\ m^{-3}$ for the five CV periods,
482	respectively. The corresponding CV-predicted mean $PM_{2.5}$ concentrations were 82, 57,
483	52, 65, and 47 μg $m^{-3},$ respectively. The relative error (RE) between the observed mean
484	$PM_{2.5}$ concentrations and the CV-predicted mean $PM_{2.5}$ concentrations ranged from -17%
485	to 15%, with a mean RE of -5% . The RMSE of the RE was 14.6%, reflecting the
486	uncertainties of the GLM method in quantitatively estimating the contribution of the
487	meteorological conditions to the air pollutant concentrations.

Table 7 also lists the daily RMSE for each CV period and the total RMSE. The 488 daily RMSE for each CV period was calculated with the daily average PM2.5 489 concentrations during each CV period, and the total RMSE was calculated with the 490 daily average PM_{2.5} concentration throughout all five CV periods combined. The daily 491 RMSE ranged from 19 to 53 μ g m⁻³, and the total RMSE was 33 μ g m⁻³, indicating that 492 the model prediction accuracy at the daily level needs to be improved. Liu et al. (2012) 493 used a generalized additive model (GAM) to predict PM2.5, which had a total daily 494 RMSE of 23 µg m⁻³. Compared with their results, the CV performance in our study was 495 satisfactory considering that the independent variables in our model were only based 496

497	on meteorological parameters, while the model of Liu et al. (2012) included AOD.
498	The relative error calculated with the CV method for GLM was -5% (Table 7),
499	which was smaller than the mean percentage difference (-16%) calculated based on
500	days with stable meteorological conditions (Table 6). Moreover, the RMSE of relative
501	error calculated with the CV method for GLM (Table 7) was 14.6%, which was also
502	smaller than the RMSE of percentage difference (18%) calculated based on days with
503	stable meteorological conditions (Table 6).

504 These indicate that the GLM reduced uncertainties of the method in 505 quantitatively estimating the contribution of the meteorological conditions to the 506 pollutant concentrations.

507 3.3.2 Residual Analysis of GLM

Table 8 shows the concentrations of air pollutants for the GLM with adjusted R^2 508 values higher than 0.6. Again, we used the PM2.5 model as an example. Table 9 lists the 509 output indexes of the PM2.5 GLM, including a model summary, analysis of variance 510 (ANOVA), coefficients, and other indexes. The values of R, R², and adjusted R² were 511 0.910, 0.828, and 0.808, respectively, indicating that the PM_{2.5} model can explain 80.8% 512 513 of the variability of the daily average $PM_{2.5}$ concentrations. The model was statistically significant according to the p-value (<0.05) from an F-test, and the meteorological 514 parameters eventually selected as the independent variables of the model were 515 statistically significant according to the p-values (<0.05) from a t-test. The 516 meteorological parameters eventually included in the model were lnWS, lnWS_{max(lag)}, 517

534

518	$PBL_{max},\ PREC,\ ln \Delta T_{(lag)},\ WS_{mode},\ WD/WS_{(lag)},\ PBL_{min(lag)},\ PREC_{(lag)},\ and\ SLP_{min}.$
519	According to the collinearity statistics, all the VIF values were within 5 and tolerance
520	values were larger than 0.1, indicating that no serious multicollinearity existed between
521	the independent parameters. The Durbin-Watson value (1.910) was close to 2,
522	accounting for the good independence of the variance.
523	Figure 12 shows a residual analysis of the model. According to the residual
524	histogram (a), the mean value of the regression standardized residual was -0.01 , with
525	a standard deviation of 0.955. According to the P-P graph (c), the distribution of the
526	observed and expected cumulative probability spread along the diagonal of $y = x$.
527	According to the de-trended P-P graph (d), the deviations from a normal distribution
528	were within ± 0.05 . These results indicate that the model residuals followed a normal
529	distribution. The scatter diagram of residuals and simulated values (b) could be applied
530	to test the homoscedasticity, i.e. the distribution of the regression residual did not
531	change over the range of values predicted by the regression. Figure S4 demonstrates
532	the time series of the observed pollutant and GLM-predicted pollutant concentrations,
533	which displayed a good correlation.

3.3.3 Quantitative Estimates of the Contribution of Meteorological Conditions to
Air Pollutant Concentrations

Figure 12 here

537 We applied the GLM to predict air pollutant concentrations during APEC 2014 538 and Parade 2015 based on meteorological parameters. The difference between the 539 observed and GLM-predicted concentrations was attributed to emission reduction

540	through the implementa	tion of air pollution	control strategies.
510	anough the implemente	and of an pollation	control bulategies.

541	Table 10 lists the percentage differences between the observed and GLM-predicted
542	concentrations of air pollutants during APEC and Parade. The mean concentrations of
543	the observed and predicted $PM_{2.5}$ were 48 and 67 $\mu g\ m^{-3}$ during APEC, i.e. a 28%
544	difference. The mean concentrations of the observed and predicted $\ensuremath{\text{PM}_{2.5}}$ were 15 and
545	$20 \ \mu g \ m^{-3}$ during Parade, i.e. a 25% difference. These differences are attributed to the
546	emission reduction through the implementation of air pollution control strategies. As
547	described in Section 3.1, the mean concentrations of $PM_{2.5}$ decreased by 58% and 63%
548	during APEC and Parade, therefore, the meteorological conditions and pollution control
549	strategies contributed 30% and 28% to the reduction of the $PM_{2.5}$ concentration during
550	APEC 2014, respectively, and 38% and 25% during Parade 2015, respectively.
551	The emission reduction during APEC in this study is comparable to the results of
552	other studies where meteorological influences were considered. For example, the $\ensuremath{\text{PM}_{2.5}}$
553	concentration decreased by 33% under the same weather conditions during APEC in
554	Beijing as modelled by the Weather Research and Forecasting model and Community
555	Multiscale Air Quality (WRF/CMAQ) model (Wu et al., 2015). In addition, emission
556	control implemented in Beijing during APEC resulted in a 22% reduction in the $PM_{2.5}$
557	concentration, as modelled by WRF-Chem (Guo et al., 2016).
558	Same as $PM_{2.5}$, the differences listed in Table 10 for other pollutants show the

reduction in emission of these pollutants and/or their precursors. The differences for EC were 37% (from 2.7 to 1.7 μ g m⁻³) during APEC and 33% (from 1.2 to 0.8 μ g m⁻³) during Parade. In contrast, the differences for OC were 11% (from 12.6 to 11.2 μ g m⁻³)

572

562	during APEC and 8% (from 3.7 to 4.0 $\mu g~m^{-3})$ during Parade. The differences for
563	carbonaceous components (OC + EC) were 16% (from 15.3 to 12.9 $\mu g\ m^{-3})$ during
564	APEC and 2% (from 4.9 to 4.8 $\mu g~m^{-3}$) during Parade. This indicates that the emission
565	reduction for OC and its precursors were smaller than the reduction of EC during APEC
566	and Parade. A similar pattern was found for the reduction for EC and OC based on days
567	with stable meteorological conditions discussed in Section 3.2.2.
568	Table 10 also shows the differences for sulphate were 44% (from 2.7 to 3.9 $\mu gm^{-3})$
569	during APEC and 50% (from 5.2 to 2.6 $\mu g~m^{-3})$ during Parade. The differences for
570	nitrate were 44% (from 19.0 to 10.6 $\mu g~m^{-3})$ during APEC and 56% (from 3.4 to 1.5 μg
571	$m^{-3})$ during Parade. The differences for ammonium were 13% (from 5.5 to 4.8 $\mu g \ m^{-3})$

573 for SNA were 29% (from 27.2 to 19.3 μ g m⁻³) during APEC and 49% (from 11.0 to 5.6 574 μ g m⁻³) during Parade.

during APEC and 38% (from 2.4 to 1.5 µg m⁻³) during Parade. In total, the differences

The concentration of sulphate is determined by primary emissions and secondary 575 transformation from SO₂; thus, the changes in sulphate concentrations may not reflect 576 the effectiveness of emission control strategies. One needs to also include the changes 577 in SO₂ concentrations. By adding the molar concentrations of SO₂ and SO₄²⁻ (S = $[SO_2]$ 578 579 + $[SO_4^{2-}]$), the concentration of total S was calculated. Table 10 shows the differences 580 for SO₂ were 50% (from 6.59 to 3.32 ppb) during APEC and 2% (from 0.56 to 0.57 ppb) during Parade, while the differences for total S were 41% (from 0.322 to 0.189 581 µmol m⁻³) during APEC and 33% (from 0.079 to 0.053 µmol m⁻³) during Parade. Coal 582 combustion emissions is the major contributor to total S, this demonstrates the effective 583

584	control of coal combustion during both APEC 2014 and Parade 2015. The difference
585	for SO_2 during APEC was larger than that during Parade, while the difference for
586	sulphate during Parade was larger than that during APEC. As discussed in Section 3.1,
587	the mean SOR was 27% and 64% during APEC and Parade, respectively, indicating
588	that the SO ₂ -to-sulphate transformation rate during APEC (autumn and early winter)
589	was much lower than during Parade (late summer and autumn).

590 It is interesting to note that the difference for OC during APEC was only 11% (Table 10) and the observed concentration of OC was even 8% higher than the GLM-591 592 predicted concentration during Parade, indicating that the control of the OC concentration was not as effective as the control of other PM_{2.5} components during 593 APEC and Parade. This may be because OC can originate from both primary emission 594 595 and secondary transformation. In contrast, the control of the SNA concentration was very effective during APEC and Parade, leading to a significant decrease of PM_{2.5} 596 during both events. 597

Table 10 shows NO_x and other PM_{2.5} components also had significant emission 598 reduction during APEC 2014 and Parade 2015. The differences between the observed 599 and GLM-predicted concentrations of NOx were 56% (from 102 to 45 ppb) during 600 APEC and 35% (from 20 to 13 ppb) during Parade. The differences for Cl⁻ were 20% 601 (from 2.58 to 2.06 μ g m⁻³) during APEC and 6% (from 0.17 to 0.16 μ g m⁻³) during 602 Parade. The differences for K⁺ were 37% (from 1.03 to 0.65 μ g m⁻³) during APEC and 603 25% (from 0.24 to 0.18 µg m⁻³) during Parade. The differences for Pb, Zn, and Mn 604 ranged from 21% to 53% during APEC and Parade. 605

606	The concentrations of Cl^- have been found to be high in the fine particles produced
607	from coal combustion (Takuwa et al., 2006), while the concentrations of K^+ are high in
608	particles derived from combustion activities, e.g. biomass burning and coal combustion.
609	Lead is typically considered to be a marker of emissions from coal combustion, power
610	stations, and metallurgical plants (Dan et al., 2004; Mukai et al., 2001; Schleicher et al.,
611	2011). Zinc can be produced by the action of a car braking and by tire wearing (Cyrys
612	et al., 2003; Sternbeck et al., 2002). Manganese mainly originates from industrial
613	activities. Major sources of $NO_{\boldsymbol{x}}$ emissions include power plants, industry, and
614	transportation (Liu and Zhu, 2013). The differences for the concentrations of total S,
615	$\text{Cl}^{\scriptscriptstyle -},\text{K}^{\scriptscriptstyle +},\text{Pb},\text{Zn},\text{Mn},\text{and NO}_x,\text{indicate that the control of anthropogenic emissions,}$
616	especially coal combustion, was very effective during APEC and Parade.

617 4 Conclusions

During the pollution control periods of APEC 2014 and Parade 2015, the concentrations of air pollutants except ozone decreased dramatically compared with the concentrations during non-control periods, accompanied by meteorological conditions favourable for pollutant dispersal.

To estimate the contributions of meteorological conditions and pollution control strategies in reducing air pollution, comparing the concentrations of air pollutants during days with stable meteorological conditions is a useful method, but has limitation due to high uncertainty and lack of a sufficient number of days with stable meteorological conditions

627 Our study shows that, if including the nonlinear relationship between 628 meteorological parameters and air pollutant concentrations, GLMs based only on meteorological parameters could provide a good explanation of the variation of 629 pollutant concentrations, with adjusted R² values mostly larger than 0.7. Since the 630 631 GLMs contained no parameters dependent on air pollution levels as independent variables, they could be used to estimate the contributions of meteorological conditions 632 633 and pollution control strategies to the air pollution levels during emission control 634 periods.

635 With the GLMs method, we found meteorological conditions and pollution control strategies played almost equally important roles in reducing air pollution in megacity 636 Beijing during APEC 2014 and Parade 2015, e.g. 30% and 28% to the reduction of the 637 638 PM_{2.5} concentration during APEC 2014, as well as 38% and 25% during Parade 2015. We also found that the control of the SNA concentration was more effective than 639 carbonaceous components. The differences between the observed and GLM-predicted 640 concentrations of specific pollutants (Cl⁻, K⁺, Pb, Zn, Mn, NO_x, and S) related to coal 641 642 combustion and industrial activities revealed the effective control of anthropogenic emissions. 643

In the future, combining the methods of source apportionment, the contributions
of emission reductions for different sources in reducing air pollution could be estimated,
enabling further analysis of pollution control strategies.

647

648 **Data availability.** The data of stationary measurements are available upon requests.

- 649 Author contribution. T. Zhu and P. F. Liang designed the experiments. P. F. Liang
- collected and weighed the PM_{2.5} filter samples. P. F. Liang, Y. H. Fang, Y. Q. Han, and
- 651 J. X. Wang carried out the analysis of the components in PM_{2.5}. Y. S. Wu and M. Hu
- 652 provided the data of gaseous pollutant concentrations. Y. R. Li computed the data of
- 653 planetary boundary layer heights from GDAS and P. F. Liang developed the generalized
- 654 linear regression model. J. X. Wang managed the data. P. F. Liang analyzed the data
- 655 with contributions from all co-authors. P. F. Liang prepared the manuscript with helps
- 656 from T. Zhu.
- 657 Acknowledgement. This study was supported by the National Natural Science
- 658 Foundation Committee of China (41421064, 21190051), the European 7th Framework
- 659 Programme Project PURGE (265325), and the Collaborative Innovation Center for
- 660 Regional Environmental Quality.

661 **Reference**

Barmpadimos, I., Keller, J., Oderbolz, D., Hueglin, C., and Prevot, A. S. H.: One decade
 of parallel fine (PM_{2.5}) and coarse (PM₁₀-PM_{2.5}) particulate matter measurements

in Europe: trends and variability, Atmos. Chem. Phys., 12, 3189-3203,
 doi:10.5194/acp-12-3189-2012, 2012.

- 669 China, S. C. o., State Council of P. R. China's notification on Action Plan for Air
 670 Pollution Prevention and Control. 2013.
- 671 Chitranshi, S., Sharma, S. P., and Dey, S.: Spatio-temporal variations in the estimation
- 672 of PM₁₀ from MODIS-derived aerosol optical depth for the urban areas in the
- 673 Central Indo-Gangetic Plain, Meteorol. Atmos. Phys., 127, 107-121,
- 674 doi:10.1007/s00703-014-0347-z, 2015.
- 675 Chow, J. C., Watson, J. G., Lu, Z. Q., Lowenthal, D. H., Frazier, C. A., Solomon, P. A.,

676	Thuillier, R. H., and Magliano, K.: Descriptive analysis of $PM_{2.5}$ and PM_{10} at
677	regionally representative locations during SJVAQS/AUSPEX, Atmos. Environ.,
678	30, 2079-2112, doi 10.1016/1352-2310(95)00402-5, 1996.
679	Chudnovsky, A. A., Koutrakis, P., Kloog, I., Melly, S., Nordio, F., Lyapustin, A., Wang,
680	Y. J., and Schwartz, J.: Fine particulate matter predictions using high resolution
681	Aerosol Optical Depth (AOD) retrievals, Atmos. Environ., 89, 189-198,
682	doi:10.1016/j.atmosenv.2014.02.019, 2014.
683	Cyrys, J., Heinrich, J., Hoek, G., Meliefste, K., Lewne, M., Gehring, U., Bellander, T.,
684	Fischer, P., Van Vliet, P., Brauer, M., Wichmann, H. E., and Brunekreef, B.:
685	Comparison between different traffic-related particle indicators: Elemental carbon
686	(EC), PM _{2.5} mass, and absorbance, J. Expo. Anal. Env. Epid., 13, 134-143,
687	doi:10.1038/sj.jea.7500262, 2003.
688	Dan, M., Zhuang, G. S., Li, X. X., Tao, H. R., and Zhuang, Y. H.: The characteristics of
689	carbonaceous species and their sources in PM2.5 in Beijing, Atmos. Environ., 38,
690	3443-3452, doi:10.1016/j.atmosenv.2004.02.052, 2004.
691	Diaz-Robles, L. A., Ortega, J. C., Fu, J. S., Reed, G. D., Chow, J. C., Watson, J. G., and
692	Moncada-Herrera, J. A .: A hybrid ARIMA and artificial neural networks model to
693	forecast particulate matter in urban areas: The case of Temuco, Chile, Atmos.
694	Environ., 42, 8331-8340, doi:10.1016/j.atmosenv.2008.07.020, 2008.
695	GEPB: Guangzhou Environmental Protection Bureau, available at:
696	http://www.gz.gov.cn/gzgov/s2812/200912/163197.shtml (last assess: 25 May
697	2017), (in Chinese), 2009.
698	Guo, J. P., He, J., Liu, H. L., Miao, Y. C., Liu, H., and Zhai, P. M.: Impact of various
699	emission control schemes on air quality using WRF-Chem during APEC China
700	2014, Atmos. Environ., 140, 311-319, doi:10.1016/j.atmosenv.2016.05.046, 2016.
701	Han, T. T., Xu, W. Q., Chen, C., Liu, X. G., Wang, Q. Q., Li, J., Zhao, X. J., Du, W.,
702	Wang, Z. F., and Sun, Y. L.: Chemical apportionment of aerosol optical properties
703	during the Asia-Pacific Economic Cooperation summit in Beijing, China, J.
704	Geophys. Res., 120, doi:10.1002/2015JD023918, 2015.
705	Hien, P. D., Bac, V. T., Tham, H. C., Nhan, D. D., and Vinh, L. D.: Influence of
706	meteorological conditions on $PM_{2.5}$ and $PM_{2.5-10}$ concentrations during the
707	monsoon season in Hanoi, Vietnam, Atmos. Environ., 36, 3473-3484,
708	doi:10.1016/S1352-2310(02)00295-9, 2002.
709	Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue,
710	L., Zeng, L. W., Liu, X. G., Zhang, Y. H., Jayne, J. T., Ng, N. L., and Worsnop, D.
711	R.: Highly time-resolved chemical characterization of atmospheric submicron
712	particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution
713	Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933-8945,
714	doi:10.5194/acp-10-8933-2010, 2010.
	32

Kelly, F. J. and Zhu, T.: Transport solutions for cleaner air, Science, 352, 934-936, 715 doi:10.1126/science.aaf3420, 2016. 716 Liu, J., Mauzerall, D. L., Chen, Q., Zhang, Q., Song, Y., Peng, W., Klimont, Z., Qiu, X. 717 718 H., Zhang, S. Q., Hu, M., Lin, W. L., Smith, K. R., and Zhu, T.: Air pollutant emissions from Chinese households: A major and underappreciated ambient 719 720 pollution source, P. Natl. Acad. Sci. USA., 113, 7756-7761, doi: 721 10.1073/pnas.1604537113, 2016. 722 Liu, J., and Zhu, T.: NOx in Chinese Megacities, Nato. Sci. Peace. Secur., 120, 249-263, doi:10.1007/978-94-007-5034-0_20, 2013. 723 724 Liu, W., Li, X. D., Chen, Z., Zeng, G. M., Leon, T., Liang, J., Huang, G. H., Gao, Z. H., Jiao, S., He, X. X., and Lai, M. Y.: Land use regression models coupled with 725 726 meteorology to model spatial and temporal variability of NO₂ and PM₁₀ in Changsha, China, Atmos. Environ., 116, 272-280, 727 728 doi:10.1016/j.atmosenv.2015.06.056, 2015. Liu, Y., Franklin, M., Kahn, R., and Koutrakis, P.: Using aerosol optical thickness to 729 predict ground-level PM_{2.5} concentrations in the St. Louis area: A comparison 730 between MISR and MODIS, Remote. Sens. Environ., 107, 33-44, 731 732 doi:10.1016/j.rse.2006.05.022, 2007. 733 Liu, Y., He, K. B., Li, S. S., Wang, Z. X., Christiani, D. C., and Koutrakis, P.: A 734 statistical model to evaluate the effectiveness of PM2.5 emissions control during 735 the Beijing 2008 Olympic Games, Environ. Int., 44. 100-105, 736 doi:10.1016/j.envint.2012.02.003, 2012. Mukai, H., Tanaka, A., Fujii, T., Zeng, Y. Q., Hong, Y. T., Tang, J., Guo, S., Xue, H. S., 737 Sun, Z. L., Zhou, J. T., Xue, D. M., Zhao, J., Zhai, G. H., Gu, J. L., and Zhai, P. Y.: 738 Regional characteristics of sulfur and lead isotope ratios in the atmosphere at 739 several Chinese urban sites, Environ. Sci. Technol., 35, 1064-1071, 740 741 doi:10.1021/es001399u, 2001. Mustaffa, N. I. H., Latif, M. T., Ali, M. M., and Khan, M. F.: Source apportionment of 742 743 surfactants in marine aerosols at different locations along the Malacca Straits, Environ. Sci. Pollut. R., 21, 6590-6602, doi:10.1007/s11356-014-2562-z, 2014. 744 Nguyen, T. T. N., Bui, H. Q., Pham, H. V., Luu, H. V., Man, C. D., Pham, H. N., Le, H. 745 T., and Nguyen, T. T.: Particulate matter concentration mapping from MODIS 746 satellite data: a Vietnamese case study, Environ. Res. Lett., 10, 095016, 747 doi:10.1088/1748-9326/10/9/095016, 2015. 748 NOAA Air Resources Laboratory: http://ready.arl.noaa.gov/READYamet.php/. 749 750 Raman, R. S. and Kumar, S.: First measurements of ambient aerosol over an 751 ecologically sensitive zone in Central India: Relationships between PM_{2.5} mass, 752 its optical properties, and meteorology, Sci. Total. Environ., 550, 706-716, doi:10.1016/j.scitotenv.2016.01.092, 2016. 753

754	Richmond-Bryant I. Saganich C. Bukiewicz L. and Kalin R : Associations of PM
755	and black carbon concentrations with traffic idling background pollution and
756	meteorology during school dismissals Sci Total Environ 407 3357-3364
750	doi:10.1016/i scitoteny 2000.01.046.2000
758	Schleicher N. Norra S. Dietze V. VI. V. Fricker M. Kamincki H. Chen V. and
750	Semicrotici, N., Norra, S., Dietze, V., Tu, T., Theker, N., Kammski, O., Chen, T., and Can K : The effect of mitigation measures on size distributed mass concentrations
759	of atmospheric particles and black carbon concentrations during the Olympic
761	Summer Games 2008 in Boiiing Sei Total Environ 412 185 103
762	doi:10.1016/i soitotony 2011.00.084.2011
762	SEDD: Shanghai Environmental Protection Burgan available at
705	strp://www.comb.gov.on/fo/cmg/ghbi//ghbi2272/ghbi2150/2010/02/20671.htm (lost
704	nttp://www.sepb.gov.ch/fa/chis/shinj//shinj21/39/2010/02/20071.htm (fast
765	assess: 25 May 2017), (III Chinese), 2010.
700	solution and should be a metage la sign manufacture and should be a solution and should be a sol
707	Unalthe Spin 12, 122, doi:10.1186/840201.014.0122.6.2014
768	Healuli. Sci., 12, 122, doi:10.1180/S40201-014-0122-0, 2014.
769	Sternbeck, J., Sjouin, A., and Andreasson, K.: Metal emissions from foad traffic and
770	the influence of resuspension-results from two tunner studies, Atmos. Environ., 50, 4725 , 4744 , doi:10.1016/S1252.2210(02)00561.7, 2002
771	4/35-4/44, doi:10.1016/S1552-2510(02)00501-7, 2002.
772	Takuwa, I., Mikitana, I. S. N., and Naruse, I.: Mechanisms of fine particulates formation
773	with alkali metal compounds during coal combustion, Fuel, 85, 6/1-6/8,
775	doi:10.1010/j.1uei.2005.08.043, 2006.
115	Tao, J., Gao, J., Zhang, L., Zhang, K., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J., and
//6	Hsu, S. C.: PM _{2.5} pollution in a megacity of southwest China: source
770	apportionment and implication, Atmos. Chem. Phys., 14, $80/9-8099$,
770	doi:10.5194/acp-14-86/9-2014, 2014.
790	finance in the section of the sectio
/80	ine particulate matter (PM _{2.5}) concentration in southern Ontario from satellite
/81	Ferriner, 114, 221, 220, d-i;10, 101 <i>Cli</i> res 2000, 00, 011, 2010
782	Environ., 114, 221-229, doi:10.1010/j.rse.2009.09.011, 2010.
783	Wang, Z. S., Li, Y. I., Chen, I., Li, L. J., Liu, B. A., Zhang, D. W., Sun, F., Wei, Q.,
784	ADEC conference in Deiling L. Coorden Dec 1200 12(05 12707
785	APEC conference in Beijing, J. Geophys. Res., 120 , $12095-12707$,
786	doi:10.1002/2015JD023652, 2015.
/8/	wen, w., Cheng, S., Chen, X., wang, G., Li, S., wang, X., and Liu, X.: Impact of
/88	emission control on PM and the chemical composition change in Beijing-Hanjin-
789	Hebel during the APEC summit 2014, Environ. Sci. Pollut. R., 23, 4309-4321,
790 701	401:10.100/(\$11550-015-55/9-5, 2010.
791	wu, Q., Au, w., and wang, Z.: The air quality forecast about PM _{2.5} before and during
/92	AFEC 2014 in Beijing by wKF-CNIAQ model system, EGU General Assembly 34

793	Conference, 2015.
794	Yanosky, J. D., Paciorek, C. J., Laden, F., Hart, J. E., Puett, R. C., Liao, D. P., and Suh,
795	H. H.: Spatio-temporal modeling of particulate air pollution in the conterminous
796	United States using geographic and meteorological predictors, Environ. Health.,
797	13, 63, doi:10.1186/1476-069x-13-63, 2014.
798	You, W., Zang, Z. L., Pan, X. B., Zhang, L. F., and Chen, D.: Estimating PM _{2.5} in Xi'an,
799	China using aerosol optical depth: A comparison between the MODIS and MISR
800	retrieval models, Sci. Total. Environ., 505, 1156-1165,
801	doi:10.1016/j.scitotenv.2014.11.024, 2015.
802	Zhang, J. P., Zhu, T., Zhang, Q. H., Li, C. C., Shu, H. L., Ying, Y., Dai, Z. P., Wang, X.,
803	Liu, X. Y., Liang, A. M., Shen, H. X., and Yi, B. Q.: The impact of circulation
804	patterns on regional transport pathways and air quality over Beijing and its
805	surroundings, Atmos. Chem. Phys., 12, 5031-5053, doi:10.5194/acp-12-5031-
806	2012, 2012.
807	Zhang, X. Y., Wang, Y. Q., Lin, W. L., Zhang, Y. M., Zhang, X. C., Gong, S., Zhao, P.,
808	Yang, Y. Q., Wang, J. Z., Hou, Q., Zhang, X. L., Che, H. Z., Guo, J. P., and Li, Y.:
809	Changes of atmospheric composition and optical properties over Beijing 2008
810	Olympic monitoring campaign, B. Am. Meteorol. Soc., 90, 1633,
811	doi:10.1175/2009BAMS2804.1, 2009.
812	Zhang, W., Zhu, T., Yang, W., Bai, Z., Sun, Y. L., Xu, Y., Yin, B., and Zhao, X.:
813	Airborne measurements of gas and particle pollutants during CAREBeijing-2008,
814	Atmos. Chem. Phys., 14, 301-316, doi:10.5194/acp-14-301-2014, 2014.

815	Figure	Captions:
015	I Igui c	Cuptions.

- 816
- 817 Figure 1. Time series of atmospheric particulate matter of aerodynamic diameter ≤ 2.5
- 818 µm (PM_{2.5}) and the concentrations of its components, wind direction (WD), wind speed
- 819 (WS), temperature (T), and relative humidity (RH) before, during, and after (a) APEC
- 820 2014 and (b) Parade 2015. The grey-shaded areas highlight the pollution control periods
- of APEC 2014 (3 November to 12 November 2014) and Parade 2015 (20 August to 3
- 822 September 2015).
- 823
- 824 Figure 2. Proportions of the measured components in PM_{2.5} during (a) APEC 2014 and
- 825 (b) Parade 2015 campaigns, including organic carbon (OC), elemental carbon (EC),
- 826 SO_4^{2-} , NO_3^{-} , NH_4^+ , Cl^- and elements. B: before; A: after.
- 827

Figure 3. Scatter plot and correlations between organic carbon (OC: *y*-axis) and elemental carbon (EC: *x*-axis) concentrations of $PM_{2.5}$ during the APEC 2014 and Parade 2015 campaigns. The red symbols denote the non-control period and the black symbols denote the pollution control period. The linear regression equations and R² values are given for these two campaigns.

833

Figure 4. Upper panel: time series of the proportion of sulphate, nitrate, and ammonia (SNA) in PM_{2.5} (ρ (SNA)/PM_{2.5}) and PM_{2.5} mass concentrations (the black bar represents PM_{2.5} concentration and the red line represents ρ (SNA)/PM_{2.5}). Middle panel: SO₂, SO₄²⁻, and SOR ([SO₄²⁻]/([SO₂]+[SO₄²⁻])). Lower panel: NO_x, NO₃⁻, and NOR ([NO₃⁻]/([NO_x]+[NO₃⁻])). Data collected during the (a) APEC 2014 and (b) Parade

- 839 2015 campaigns. The hollow bars represent gaseous pollutants (red for SO₂, blue for
- NO_x), and solid bars represent secondary inorganic ions (red for sulphate, blue for
- 841 nitrate).
- 842
- 843 Figure 5. Wind rose plots based on frequencies of half-hourly data before APEC
- 844 (BAPEC), during APEC, and after APEC (AAPEC) on the left, and before Parade
- 845 (BParade), during Parade, and after Parade (AParade) on the right.
- 846
- 847 Figure 6. Time series of daily PM_{2.5} concentrations and planetary boundary layer (PBL)
- heights during the (a) APEC and (b) Parade campaigns. The black line represents PM_{2.5}
- 849 concentrations and the red line represents PBL heights. The grey-shaded areas highlight
- the pollution control periods of APEC 2014 (3 November to 12 November 2014) and
- 851 Parade 2015 (20 August to 3 September 2015).
- 852
- Figure 7. Scatter plot showing the correlation between daily PM_{2.5} concentrations (*y*axis) and (a) daily PBL heights (*x*-axis) and (b) daily WSs (*x*-axis) during the APEC 2014 sampling period (October to December 2014) and Parade 2015 sampling period (August to December 2015). The red and black scattered points represent different distribution areas. The piecewise function regression equations and the corresponding values of PBL height and WS according to the intersections are given.
- 859

Figure 8. The black bars represent the percentage reductions calculated by comparing
the decreased average concentrations during APEC to the average concentrations
before APEC. The red bars represent the percentage reductions calculated by comparing

863	the decreased average concentrations during APEC to the average concentrations
864	before APEC based only on the days with stable meteorological conditions. The
865	whiskers represent the standard deviations of the percentage reductions.
866	
867	Figure 9. Variations of air pollutant concentrations during days with stable
868	meteorological conditions during the APEC 2014 campaign, including $PM_{2.5}$, sulphate,
869	nitrate, and ammonium (SNA), organic carbon (OC), elemental carbon (EC), Cl^- , K^+ ,
870	elements (Pb, Zn, Ni, Mn, and Ca), and gaseous pollutants (SO ₂ , NO, NO _x , and O ₃).
871	The red points represent mean values. The black cross bars are median values. The
872	black box denotes the 25 th and 75 th percentiles. The whiskers represent the maximum
873	and minimum, respectively. B: before; A: after.
873 874	and minimum, respectively. B: before; A: after.
873 874 875	and minimum, respectively. B: before; A: after. Figure 10. Scatter plot and correlations between GLM-predicted (y-axis) and observed
873 874 875 876	and minimum, respectively. B: before; A: after. Figure 10. Scatter plot and correlations between GLM-predicted (y-axis) and observed (x-axis) concentrations of pollutants transformed to a natural log. The linear regression
873 874 875 876 877	and minimum, respectively. B: before; A: after. Figure 10. Scatter plot and correlations between GLM-predicted (y-axis) and observed (x-axis) concentrations of pollutants transformed to a natural log. The linear regression equations and R ² values are given.
873 874 875 876 877 878	and minimum, respectively. B: before; A: after. Figure 10. Scatter plot and correlations between GLM-predicted (<i>y</i> -axis) and observed (<i>x</i> -axis) concentrations of pollutants transformed to a natural log. The linear regression equations and R ² values are given.
873 874 875 876 877 878 879	and minimum, respectively. B: before; A: after. Figure 10. Scatter plot and correlations between GLM-predicted (y-axis) and observed (x-axis) concentrations of pollutants transformed to a natural log. The linear regression equations and R ² values are given. Figure 11. Time series of the observed and cross-validation (CV) predicted PM _{2.5}
873 874 875 876 877 878 878 879 880	and minimum, respectively. B: before; A: after. Figure 10. Scatter plot and correlations between GLM-predicted (y-axis) and observed (x-axis) concentrations of pollutants transformed to a natural log. The linear regression equations and R ² values are given. Figure 11. Time series of the observed and cross-validation (CV) predicted PM _{2.5} concentrations during five CV periods. The black line represents the observed PM _{2.5}
873 874 875 876 877 878 879 880 881	and minimum, respectively. B: before; A: after. Figure 10. Scatter plot and correlations between GLM-predicted (y-axis) and observed (x-axis) concentrations of pollutants transformed to a natural log. The linear regression equations and R ² values are given. Figure 11. Time series of the observed and cross-validation (CV) predicted PM _{2.5} concentrations during five CV periods. The black line represents the observed PM _{2.5} concentration and the red line represents the CV-predicted PM _{2.5} concentration.

Figure 12. Residual analysis of the model. (a) Histogram of the regression standardized
residual. (b) Scatter plot between the regression standardized predicted value and
regression standardized residual. (c) Normal P-P plot of the regression standardized

- 886 residual between the observed cumulative probability and expected cumulative
- 887 probability. (d) De-trended normal P-P plot of the standardized residual of observed
- 888 cumulative probability.
- 889
- 890

Table 1. Air pollution control strategies during APEC 2014 and Parade 2015.

Dariada	Control	Detail of mansuras
renous	measures	Detail of measures
		The odd/even plate number rule for traffic control in
		Beijing, Tianjin, Hebei and Shandong; 70% (APEC
	Traffic control	2014)/80% (Parade 2015) of official vehicle and
		"yellow label vehicles" were banned from Beijing's
APEC 2014		roads; Trucks limited to run inside the 6th Ring Road
(3 to 12		between 6 AM to 24 PM.
November		More than 10,000 factories production limited or
2014) and	Industrial	halted in Beijing and Hebei, Tianjin, Shandong,
Parade 2015	emission control	Shanxi and Inner Mongolia which surround Beijing
(20 August to		city.
3 September		Dust emission factories and outdoor constructions
2015)	Dust pollution	shut down or limited in Beijing and near area;
	control	Enhancing road cleaning and spray and aspirating in
		Beijing.
		State-owned enterprise productions enhancing
	Coal-fired	limited and 40% coal-fired boilers shut down in
	control	Beijing; more special pollutant emission factory
		limited around Beijing.

al., 2014

894	Table 2. Summar	y of statistical	models applie	d to predict	t air pollutar	t concentrations
-----	-----------------	------------------	---------------	--------------	----------------	------------------

Dependent Independent variables \mathbb{R}^2 Methods* Applications variables PM_{2.5} meteorological parameters 0.47 MLR Gupta and (T/RH/PBL/WS/cloud fraction), AOT Christopher, 2009 PM_{10} meteorological parameters 0.21/0.30 (MODIS/MISR) MLR Sotoudeheian (T/WD/RH/PBL/WS), AOD and Arhami, 2014 PM_{10} meteorological parameters (RH/WS/T), 0.49-0.88 (spatial-temporal MLR Chitranshi et AOD variability) al., 2015 PM_{2.5} meteorological parameters (T/RH/PREC), 0.60/0.58 (MOD/MYD) MLR Nguyen et al., AOT 2015 ln(PM_{2.5}), 0.60-0.74 GLM Hien et al., meteorological parameters $ln(PM_{2.5-10})$ (ln(PREC)/ln(RH)/ln(WS)/ln(SUN)/ln(T)), 2002 atmospheric turbulence parameters $(\ln(\Delta u/\Delta z)/\ln(\Delta \theta/\Delta z))$ ln(PM_{2.5}) meteorological parameters 0.51/0.62 (MODIS/MISR) GLM Liu et al., 2007 (T/WD/ln(WS)/ln(PBL)), ln(AOT), categorical parameters $log(PM_{2.5}),$ meteorological parameters (T/wind index), 0.62/0.42 (PM_{2.5}/BC) GLM Richmondlog(BC) traffic-related parameters Bryant et al., 2009 GLM ln(PM_{2.5}) meteorological parameters (ln(PBL)/GEO-0.65 Tian and Chen, 2010 4 RH/ln(surface RH)/T), ln(AOD) $ln(PM_{10})$ meteorological parameters 0.18/0.38 (MODIS/MISR) GLM Sotoudeheian (T/WD/RH/ln(PBL)/ln(WS)), ln(AOD) and Arhami, 2014 ln(PM_{2.5}) meteorological parameters 0.67/0.72 (MODIS/MISR) GLM You et al., (ln(PBL)/RH/Vis/ln(T)/ln(WS)), ln(AOD) 2015 ln(PM_{2.5}) meteorological parameters 0.54/0.31/0.32/0.88 (winter/pre-GLM Raman and (WS/WD/T/RH/pressure), optical monsoon/monsoon/post-monsoon) Kumar, 2016 properties (absorption/scattering/attenuation coefficient) smooth non-parametric functions of $PM_{10}, PM_{2.5}$ 0.58 GAM Barmpadimos et al., 2012 spatial/temporal variates PM_{2.5}, PM₁₀, smooth non-parametric functions of 0.77/0.58/0.46-0.52 GAM Yanosky et al., 2014 PM_{2.5-10} (PM_{2.5}/PM₁₀/PM_{2.5-10}) spatial/temporal variates PM_{10} meteorological parameters 0.78 ANN Diaz-Robles et (WS/T_{min}/T_{max}), previous day PM_{10} al., 2008 PM_{2.5} meteorological parameters 0.89 LUR Chudnovsky et

895 with meteorological parameters.

(WS/RH/PBL/WS*PBL), AOD, spatial

	explanatory variables			
PM ₁₀ , NO ₂	meteorological parameters (T/RH/WS/air	0.45/0.43 (PM ₁₀ /NO ₂)	LUR	Liu et al., 2015
	pressure/cloud cover/percentage of			
	haze/mist/rain/sun), spatial explanatory			
	variables			

*MLR: multiple linear regression model, GLM: generalized linear regression model, GAM: generalized additive model, ANN: artificial neural networks, LUR: land use regression model.

896

898	Table 3. Meteorological parameters used in the GLM. The calculation of each
899	meteorological parameter is based on the sample duration of 23.5 h (09:30-09:00 LT
900	the next day).

Parameters	Abbreviations	Description
XX7: 1 1:	WD	The average of wind direction values.
wind direction	WD _{sum}	The sum of wind direction values.
value*	WD _{mode}	The mode of wind direction values.
	WS	The average of wind speed.
Wind speed (m s ⁻¹)	WS _{mode}	The mode of wind speed.
	WS_{max}	The maximum of wind speed.
	Т	The average of temperature.
Tomore (QC)	T_{max}	The maximum of temperature.
Temperature (°C)	$\mathrm{T}_{\mathrm{min}}$	The minimum of temperature.
	ΔT	The difference of temperature.
C 1 1	SLP	The average of sea level pressure.
Sea level pressure	SLP _{max}	The maximum of sea level pressure.
(IIFa)	SLP _{min}	The minimum of sea level pressure.
Relative humidity	RH	The average of relative humidity.
(%)	RH _{max}	The maximum of relative humidity.
Precipitation (mm)	PREC	The accumulation of precipitation.
		The average of wind direction value/wind
Wind index	WD/WS	speed.
	WD/WS _{sum}	The sum of wind direction value/wind speed.
	DDI	The average of 3-h planetary boundary layer
	FDL	height.
Planetary boundary	PRI	The minimum of 3-h planetary boundary layer
layer height (m)	r DL _{min}	height.
	PBI mar	The maximum of 3-h planetary boundary layer
	I DLmax	height.

* Since the degree data of wind direction cannot be applied directly, the values of wind directions are donated such that value = 1, 2, 3 for north, south, and "calm and variable", respectively.

Pollutants	Units	BAPEC	APEC	AAPEC	BParade	Parade	AParade
PM _{2.5}		113±62	48±35	97±84	41±14	15±6	39±28
OC		15.3±8.7	11.2±7.2	21.3±15.5	7.4±1.9	$4.0{\pm}1.0$	6.3±3.1
EC		$2.7{\pm}1.4$	$1.7{\pm}1.0$	3.5±1.8	1.6±0.3	0.8 ± 0.1	2.0±1.0
SO_4^{2-}		12.6±9.1	3.9±3.0	9.6±12.4	10.6±6.2	2.6±1.3	7.9±7.3
NO ₃ -		29.4±21.4	10.6 ± 11.0	16.3±19.4	$5.0{\pm}3.9$	1.5 ± 1.5	6.4 ± 6.2
NH_{4^+}		$15.0{\pm}10.6$	4.8±4.2	10.3 ± 11.9	5.2 ± 2.6	$1.5{\pm}1.0$	5.4 ± 5.4
Cl		$3.19{\pm}1.61$	2.06 ± 2.11	6.59 ± 6.67	$0.20{\pm}0.16$	0.16 ± 0.12	0.53 ± 0.24
Na^+	$\mu g \ m^{-3}$	0.50 ± 0.26	0.26 ± 0.15	0.57 ± 0.46	0.16 ± 0.09	$0.10{\pm}0.05$	0.16 ± 0.08
\mathbf{K}^+		1.20 ± 0.63	0.65 ± 0.51	1.52 ± 1.43	0.30 ± 0.13	0.18 ± 0.08	0.38 ± 0.20
Mg^{2+}		0.07 ± 0.03	0.09 ± 0.02	0.13 ± 0.07	0.01 ± 0.01	0.01 ± 0.00	0.02 ± 0.01
Ca^{2+}		0.52 ± 0.34	0.28 ± 0.19	0.53 ± 0.40	0.14 ± 0.07	$0.10{\pm}0.04$	0.17 ± 0.05
SO_2		11.3±5.0	9.5±6.8	34.8±15.3	$2.7{\pm}1.6$	$1.6{\pm}1.4$	5.9 ± 5.2
NO		54.2 ± 30.5	21.9 ± 13.8	112.3±63.2	3.2 ± 2.1	1.2 ± 0.9	9.3±7.5
NO _x		151±62	81±46	220±107	57±11	26±13	63±24
O ₃		23±16	38±19	17±14	116±33	79±22	74±27
Ca		582±431	591±335	1536±579	202±64	108±36	188±130
Co		0.48 ± 0.21	0.34 ± 0.18	0.90 ± 0.52	0.21 ± 0.08	0.05 ± 0.02	0.16 ± 0.10
Ni		$3.20{\pm}1.56$	5.07 ± 7.42	5.17 ± 2.50	1.75 ± 1.16	0.63 ± 0.72	1.16 ± 0.67
Cu		35.7±16.2	19.1±12.6	43.3±31.2	12.4±5.1	3.7±1.3	9.6±6.5
Zn		320±146	128 ± 120	315±310	97±46	20±9	71±54
Se		6.45 ± 3.46	3.76 ± 3.84	5.22 ± 6.56	7.06 ± 3.41	3.19 ± 2.76	3.17 ± 2.76
Mo		$2.20{\pm}1.12$	1.63 ± 1.14	2.85 ± 2.67	0.62 ± 0.41	0.16 ± 0.14	0.53 ± 0.46
Cd		3.86 ± 2.53	$1.41{\pm}1.25$	3.11±2.52	2.35 ± 5.72	0.22 ± 0.17	0.71 ± 0.74
T1	n ∝ m ^{−3}	1.87 ± 0.90	$0.87{\pm}1.01$	2.03 ± 1.96	0.50 ± 0.31	0.05 ± 0.06	0.33±0.39
Pb	ng m -	121±59	55±52	104 ± 81	36±19	9±6	29±26
Th		0.09 ± 0.05	0.06 ± 0.03	0.09 ± 0.06	0.02 ± 0.01	0.01 ± 0.01	0.01 ± 0.01
U		0.06 ± 0.02	0.05 ± 0.03	0.09 ± 0.06	0.02 ± 0.01	0.00 ± 0.00	0.01 ± 0.02
Na		529±261	355±209	907±632	182±71	96±39	181±96
Mg		153±94	105±47	236±143	43±13	15±8	24±15
Al		516±324	338±154	588±406	141±82	130±60	136±93
Mn		55.5±23.3	34.5±24.1	61.6±52.4	17.3±6.4	3.6±1.8	14.8±9.2
Fe		755±314	573±336	883±538	269±71	98±28	234±139
Ba		16.3±8.0	11.0 ± 8.4	13.8±8.1	4.7±1.6	1.9±0.6	4.1±2.3

Table 4. Statistical summary showing the mean concentrations and standard deviations of PM_{2.5}, gaseous pollutants, and PM_{2.5} components. B: before: A: after.

904

908	condi	tions durin	g the AP	EC camp	baign. I	3: befo	ore; A: a	fter.					
		WS	PBL	PM _{2.5}	OC	EC	SO_4^{2-}	NO_3^-	$\mathbf{NH_{4}^{+}}$	SO_2	NO	NO_x	O ₃
		(m s ⁻¹)	(m)					(µg	m ⁻³)				
	10/18	1.27	145	153	-	-	14.3	43.0	19.4	-	73	240	45.2
	10/22	1.46	233	67	10.9	3.6	7.4	14.0	9.3	12.1	59	153	4.4
	10/23	1.46	188	108	18.0	2.6	11.3	23.7	13.2	11.5	91	200	6.6
	10/24	1.52	171	177	20.5	3.0	24.6	54.2	28.3	12.0	73	205	20.4
BAPEC	10/28	1.71	232	87	15.9	3.8	7.0	17.8	7.9	13.0	69	165	14.2
	10/29	1.10	193	132	23.6	5.3	10.6	35.2	14.0	15.6	99	229	10.0
	10/30	1.00	160	170	26.0	4.0	18.5	56.0	25.7	18.4	77	195	7.5
	10/31	1.50	209	138	17.0	3.9	13.5	29.3	16.1	8.1	79	183	4.6
	Mean	1.38	191	129	18.8	3.7	13.4	34.2	16.7	12.9	77	196	14.1
	11/3	1.98	211	39	11.1	1.8	1.8	4.9	2.6	5.8	19	84	36.5
	11/4	1.85	163	116	22.7	2.9	9.6	33.1	13.2	26.0	31	144	20.5
	11/7	1.63	264	59	12.5	2.8	4.3	10.9	6.1	13.6	30	101	15.0
APEC	11/8	2.00	196	76	17.3	2.4	7.3	21.1	8.8	11.8	26	101	33.6
	11/9	1.79	154	66	17.6	2.5	4.9	14.0	6.3	9.2	44	125	27.7
	11/10	2.13	177	61	14.3	1.8	5.6	17.9	7.5	10.2	31	115	29.2
	Mean	1.90	194	70	15.9	2.4	5.6	17.0	7.4	12.7	30	112	27.1

15.2

24.2

14.5

27.1

53.2

41.6

14.0

27.1

61

118

57

101

267

220

58

126

4.5

6.6

3.8

3.8

5.0

3.7

3.3

4.4

3.4

7.2

2.8

6.3

38.2

26.2

3.3

12.5

4.1

10.6

3.7

8.3

35.2

28.8

4.5

13.6

6.4

19.6

4.0

14.3

55.6

46.9

5.4

21.7

30.3

52.0

30.4

54.5

54.6

38.8

32.2

41.8

87

148

125

162

190

200

89

143

171

276

206

285

369

383

183

268

14.7

5.0

25.0

6.2

1.0

2.9

26.7

11.6

Table 5. Statistical summary showing the meteorological conditions (WS and PBL height), and the concentrations of pollutants on the days with stable meteorological

909

AAPEC

11/14

11/15

11/17

11/18

11/19

11/20

11/22

Mean

1.58

1.38

2.48

1.44

1.23

1.94

1.96

1.72

169

173

252

106

121

120

178

- 910 Table 6. The percentage differences (PD) for the PM_{2.5} concentrations of four periods
- 911 (P1, P2, P3, and P4) that were randomly selected from within the non-control stable912 days of the APEC 2014 and Parade 2015 campaigns.

	Mean		Total SD	Perc	entage diff	ferences (I	PD)*	Maan	DMCE
Periods	values (µg m ⁻³)	SD (µg m ⁻³)	(μg m ⁻³)	P1	P2	Р3	P4	PD	of PD
P1	120	97		-	-	-	-		
P2	101	58	50	-16%	-	-	-	160/	1.90/
P3	96	40	39	-20%	-5%	-	-	-10%	18%
P4	87	23		-28%	-14%	-9%	-		

* Percentage difference (PD) = (Mean value of P_{n+1} - Mean value of P_n)/Mean value of $P_n \times 100\%$.

913

CV1 0.748 94 82 53 15% CV2 0.798 59 57 20 4% CV3 0.783 44 52 19 33 -15% -5% 14.6% CV4 0.710 54 65 27 -17% - CV5 0.807 41 47 30 -13% -	Periods	Adjusted R ²	Observed mean values (μg m ⁻³)	Predicted mean values (μg m ⁻³)	Daily RMSE (µg m ⁻³)	Total RMSE (µg m ⁻³)	Relative errors (RE)*	Mean RE	RMSE of RE
CV2 0.798 59 57 20 4% CV3 0.783 44 52 19 33 -15% -5% 14.6% CV4 0.710 54 65 27 -17% - CV5 0.807 41 47 30 -13% -	CV1	0.748	94	82	53		15%		
CV3 0.783 44 52 19 33 -15% -5% 14.6% CV4 0.710 54 65 27 -17% CV5 0.807 41 47 30 -13%	CV2	0.798	59	57	20		4%		
CV4 0.710 54 65 27 -17% CV5 0.807 41 47 30 -13%	CV3	0.783	44	52	19	33	-15%	-5%	14.6%
CV5 0.807 41 47 30 -13%	CV4	0.710	54	65	27		-17%		
	CV5	0.807	41	47	30		-13%		

915 Table 7. The cross-validation (CV) performance of the PM_{2.5} GLM.

*Relative error (RE) = (Predicted mean value - Observed mean value)/Predicted mean value $\times 100\%$.

Pollutants	Model descriptions	Adjusted R ²
PM _{2.5}	$ln(PM_{2.5})=-0.48lnWS-0.43lnWS_{max(lag)}-0.00076PBL_{max}-0.11PREC+0.25ln\Delta T_{(lag)}-0.14WS_{mode}+0.48WD/WS_{(lag)}+0.0043PBL_{min(lag)}-0.025PREC_{(lag)}-0.015SLP_{min}\pm19.51$	0.808
EC	$\label{eq:linear} \begin{array}{l} \text{ln(EC)=0.60lnWD/WS}_{sum} - 0.59lnPBL-\\ 0.017PREC_{(lag)} + 0.22ln\Delta T-\\ 0.50lnWS_{(lag)} + 0.25lnPBL_{max(lag)} - 0.17 \end{array}$	0.780
OC	$\label{eq:ln(OC)} \begin{split} &\ln(OC) = -0.44 lnWS + 0.47 WD/WS_{(lag)} - 0.67 lnPBL - \\ &0.020 PREC_{(lag)} + 0.67 lnWD + 0.17 ln\Delta T - \\ &0.65 lnRH_{max(lag)} + 7.84 \end{split}$	0.751
SO 4 ²⁻	$ln(SO_4^{2-})=-0.99lnWS_{(lag)}+0.066T_{min}-0.040PREC_{(lag)}-1.20lnPBL+0.0011PBL_{(lag)}+0.019RH-0.12PREC+0.087WS_{max}+6.68$	0.795
NO ₃ -	$\label{eq:ln(NO3^-)=-1.90lnPBL-} ln(NO3^-)=-1.90lnPBL- 0.96lnWS_{(lag)}+0.88WD+0.0045PBL_{min}- 0.20PREC+0.12WS_{max}+1.57lnRH+0.60ln\Delta T_{(lag)}- 1.22lnRH_{max(lag)}-0.047\Delta T+9.32$	0.833
$\mathrm{NH_4}^+$	$ln(NH4^{+})=0.040RH-1.27lnWS_{(lag)}-1.03lnRH_{(lag)}-0.00075PBL_{max}-0.16PREC+0.33ln\Delta T_{(lag)}+4.28$	0.813
Cl-	$ln(Cl-) = -1.12lnPBL-0.072T_{(lag)}+1.60lnWD-2.32lnRH_{max(lag)}+0.53lnWD/WS_{sum(lag)}+14.69$	0.737
K ⁺	$\label{eq:ln(K^+)=-0.75lnPBL-0.66lnWS_{(lag)}-0.020RH_{(lag)}+0.0056PBL_{min}-0.20WS_{mode}+0.33ln \triangle T_{(lag)}-0.47lnPBL_{max(lag)}-0.087PREC+0.66lnRH+5.46$	0.717
Pb	$ln(Pb) = -0.61 lnWS - 0.67 lnWS_{max(lag)} + 0.36 ln\Delta T_{(lag)} - 0.00062 PBL_{max} - 0.19WS_{mode} - 0.030 PREC_{(lag)} + 5.39$	0.721
Zn	ln(Zn)=-0.81lnWS-0.41lnWS _{max(lag)} -0.0016PBL- 0.36lnWS _{mode(lag)} +6.56	0.627
Mn	ln(Mn)=0.80WD/WS-0.98lnPBL- 0.043PREC _(lag) +0.57WD/WS _(lag) -0.017RH- 0.023SLP+0.0030PBL _{min(lag)} +31.04	0.656
SO_2	$ln(SO_2)=-1.32lnPBL-0.071PREC_{(lag)}-0.047PREC+0.29WD_{mode(lag)}-0.026RH-0.47lnWS_{(lag)}+14.12lnSLP_{max}-87.56$	0.803
NO _x	$\ln(NO_x)=0.014WD/WS_{sum}-0.030T_{min}+0.27\ln\Delta T-0.44\ln PBL-0.015PREC-0.012PREC(lag)+5.30$	0.772

917Table 8. The concentrations of air pollutants for the GLM with adjusted R^2 values higher918than 0.6.

920	Table 9. The output indexes of the PM _{2.5} GLM, including a model summary, analysis
921	of variance (ANOVA), coefficients, and other indexes.

Model Summary and ANOVA											
R	\mathbb{R}^2	Adjusted R ²	Std. Error of the Estimate	Durbin- Watson	F	Sig.*					
0.910	0.828	0.808	0.411	1.910	41.763	0.000					
Coefficients											
Model	Unstandardized Coefficients		t	Sig.*	Collinearity	Statistics					
	В	Std. Error			Tolerance	VIF					
(Constant)	19.512	6.871	2.840	0.006							
lnWS	-0.483	0.162	-2.971	0.004	0.313	3.194					
$lnWS_{max(lag)}$	-0.431	0.153	-2.818	0.006	0.300	3.331					
PBL _{max}	-0.001	0.000	-6.747	0.000	0.395	2.534					
PREC	-0.110	0.029	-3.735	0.000	0.618	1.618					
$ln \triangle T_{(lag)}$	0.247	0.083	2.975	0.004	0.662	1.512					
WS _{mode}	-0.135	0.050	-2.726	0.008	0.493	2.027					
WD/WS _(lag)	0.476	0.148	3.222	0.002	0.353	2.829					
PBL _{min(lag)}	0.004	0.001	3.510	0.001	0.407	2.459					
PREC(lag)	-0.025	0.009	-2.796	0.006	0.707	1.415					
SLP _{min}	-0.015	0.007	-2.176	0.032	0.707	1.414					

*The significance level is 0.05.

	Units	During APEC			During Parade		
Pollutants		Observed	Predicted	Percentage differences ¹	Observed	Predicted	Percentage differences
PM _{2.5}		48	67	28%	15	20	25%
OC		11.2	12.6	11%	4.0	3.7	-8%
EC		1.7	2.7	37%	0.8	1.2	33%
SO_4^{2-}	$\mu g \ m^{-3}$	3.9	2.7	-44%	2.6	5.2	50%
NO ₃ -		10.6	19.0	44%	1.5	3.4	56%
\mathbf{NH}_{4}^{+}		4.8	5.5	13%	1.5	2.4	38%
Cl		2.06	2.58	20%	0.16	0.17	6%
\mathbf{K}^+		0.65	1.03	37%	0.18	0.24	25%
Pb		55	70	21%	9	17	47%
Zn	ng m ⁻³	128	171	25%	20	41	51%
Mn		34.5	51.5	33%	3.6	7.6	53%
SO_2		3.32	6.59	50%	0.57	0.56	-2%
NO _x	рро	45	102	56%	13	20	35%
OC+EC	$\mu g m^{-3}$	12.9	15.3	16%	4.8	4.9	2%
SNA	$\mu g \ m^{-3}$	19.3	27.2	29%	5.6	11.0	49%
total S ²	$\mu mol \ m^{-3}$	0.189	0.322	41%	0.053	0.079	33%

Table 10. The percentage differences between the observed and GLM-predictedconcentrations of the air pollutants during APEC and Parade.

¹Percentage difference = (Predicted - Observed)/Predicted \times 100%.

²total S = $[SO_2] + [SO_4^{2-}]$.

925

Figure 1. Time series of atmospheric particulate matter of aerodynamic diameter ≤ 2.5 μ m (PM_{2.5}) and the concentrations of its components, wind direction (WD), wind speed (WS), temperature (T), and relative humidity (RH) before, during, and after (a) APEC 2014 and (b) Parade 2015. The grey-shaded areas highlight the pollution control periods of APEC 2014 (3 November to 12 November 2014) and Parade 2015 (20 August to 3 September 2015).

938 (b) Parade 2015 campaigns, including organic carbon (OC), elemental carbon (EC),

- 939 SO_4^{2-} , NO_3^{-} , NH_4^+ , Cl^- and elements. B: before; A: after.
- 940

941

Figure 3. Scatter plot and correlations between organic carbon (OC: *y*-axis) and elemental carbon (EC: *x*-axis) concentrations of $PM_{2.5}$ during the APEC 2014 and Parade 2015 campaigns. The red symbols denote the non-control period and the black symbols denote the pollution control period. The linear regression equations and R^2 values are given for these two campaigns.

Figure 4. Upper panel: time series of the proportion of sulphate, nitrate, and ammonia 949 (SNA) in $PM_{2.5}$ ($\rho(SNA)/PM_{2.5})$ and $PM_{2.5}$ mass concentrations (the black bar 950 951 represents $PM_{2.5}$ concentration and the red line represents $\rho(SNA)/PM_{2.5}$). Middle panel: SO₂, SO₄²⁻, and SOR ($[SO_4^2^-]/([SO_2]+[SO_4^2^-])$). Lower panel: NO_x, NO₃⁻, and NOR 952 953 $([NO_3^-]/([NO_x]+[NO_3^-]))$. Data collected during the (a) APEC 2014 and (b) Parade 2015 campaigns. The hollow bars represent gaseous pollutants (red for SO₂, blue for 954 NO_x), and solid bars represent secondary inorganic ions (red for sulphate, blue for 955 956 nitrate). 957

959 Figure 5. Wind rose plots based on frequencies of half-hourly data before APEC

```
960 (BAPEC), during APEC, and after APEC (AAPEC) on the left, and before Parade
```

- 961 (BParade), during Parade, and after Parade (AParade) on the right.
- 962

Figure 6. Time series of daily PM_{2.5} concentrations and planetary boundary layer (PBL)
heights during the (a) APEC and (b) Parade campaigns. The black line represents PM_{2.5}
concentrations and the red line represents PBL heights. The grey-shaded areas highlight
the pollution control periods of APEC 2014 (3 November to 12 November 2014) and
Parade 2015 (20 August to 3 September 2015).

Figure 7. Scatter plot showing the correlation between daily PM_{2.5} concentrations (*y*axis) and (a) daily PBL heights (*x*-axis) and (b) daily WSs (*x*-axis) during the APEC
2014 sampling period (October to December 2014) and Parade 2015 sampling period
(August to December 2015). The red and black scattered points represent different
distribution areas. The piecewise function regression equations and the corresponding
values of PBL height and WS according to the intersections are given.

979 Figure 8. The black bars represent the percentage reductions calculated by comparing 980 the decreased average concentrations during APEC to the average concentrations 981 before APEC. The red bars represent the percentage reductions calculated by comparing 982 the decreased average concentrations during APEC to the average concentrations 983 before APEC based only on the days with stable meteorological conditions. The 984 whiskers represent the standard deviations of the percentage reductions.

985

Figure 9. Variations of air pollutant concentrations during days with stable meteorological conditions during the APEC 2014 campaign, including PM_{2.5}, sulphate, nitrate, and ammonium (SNA), organic carbon (OC), elemental carbon (EC), Cl⁻, K⁺, elements (Pb, Zn, Ni, Mn, and Ca), and gaseous pollutants (SO₂, NO, NO_x, and O₃). The red points represent mean values. The black cross bars are median values. The black box denotes the 25th and 75th percentiles. The whiskers represent the maximum and minimum, respectively. B: before; A: after.

993

994

995 Figure 10. Scatter plot and correlations between GLM-predicted (y-axis) and observed

996 (x-axis) concentrations of pollutants transformed to a natural log. The linear regression

- 997 equations and R^2 values are given.
- 998
- 999

1001 Figure 11. Time series of the observed and cross-validation (CV) predicted PM_{2.5}

1002 concentrations during five CV periods. The black line represents the observed PM_{2.5}

1003 concentration and the red line represents the CV-predicted PM_{2.5} concentration.

1004

Figure 12. Residual analysis of the model. (a) Histogram of the regression standardized residual. (b) Scatter plot between the regression standardized predicted value and regression standardized residual. (c) Normal P-P plot of the regression standardized residual between the observed cumulative probability and expected cumulative probability. (d) De-trended normal P-P plot of the standardized residual of observed cumulative probability.